Immunotherapy Combo Reduces Solid Tumors in Mice

When tumor cells are infected with an oncolytic virus carrying a modified CD19 gene, they become targets for CAR T cells engineered to recognize this molecular marker.

amanda heidt
| 5 min read
CAR T cells, oncolytic virus, CD19, mouse model, solid cancer, liquid cancer, tumor, immune response, immunotherapy, T cell, treatment

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: Researchers used engineered viruses to force the production of the CD19 protein (in purple) on the surface of solid tumor cells in a dish.
CITY OF HOPE

Researchers have been working in recent years to apply the successes of CAR T cell immunotherapy treatments to solid tumors. But breast, liver, brain, and other solid cancers have been less amenable to the approach than blood-based cancers have been. Now, scientists are looking to piggyback CAR T cells with other promising immunotherapies, such as oncolytic viruses, which preferentially infect cancerous cells, to bring the same positive benefits to other malignancies.

A study published on September 2 in Science Translational Medicine details the collective strength of these two immunotherapies to eliminate solid cancers using a protein marker called CD19, which is targeted in CAR T therapies for liquid cancers.

In both human cancer cell cultures and mouse models, solid tumor cells exposed to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • amanda heidt

    Amanda Heidt

    Amanda was an associate editor at The Scientist, where she oversaw the Scientist to Watch, Foundations, and Short Lit columns. When not editing, she produced original reporting for the magazine and website. Amanda has a master's in marine science from Moss Landing Marine Laboratories and a master's in science communication from UC Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences