Using CRISPR to Edit Genes in Induced Pluripotent Stem Cells

Tips on how to surmount the challenges of working with CRISPR to manipulate genes in human stems cells to study their function in specific diseases or to correct genetic defects in patient cells.

Written byKelly Rae Chi
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

© BRYAN SATALINOThe past decade has seen the birth of two incredibly useful biological tools, and now scientists are beginning to marry them. The first is human induced pluripotent stem cells (iPSCs). Nobel Prize–winning advances, beginning with mice in 2006 and subsequently in humans, showed that it was possible to revert adult skin cells to pluripotent stem cells, which can in turn be coaxed to become nearly any cell type. These cells are the cell-scale embodiment of a person’s genome, and provide researchers with the ability to create cell types that would be otherwise impossible to cull from the living body. iPSCs offer powerful new ways to model monogenetic and complex human diseases and to tailor cell-based therapies.

The second tool is the CRISPR-Cas9 system, which allows easy and precise editing of any region of the genome. When it comes to traditional immortalized cell lines, such as HeLa or HEK293, cutting with CRISPR is something a relative newcomer can learn in week. A second wave of CRISPR-based methods that work by boosting or dampening gene-expression levels, rather than cutting genes, has made the tool even more useful.

Together, these techniques are more than the sum of their parts. CRISPR’ing human iPSCs allows researchers to manipulate genes to study their functions in the context of specific diseases, or to correct genetic defects in patient cells. One challenge that seamless gene editing helps address is the genetic variability across different iPSC lines that has prevented ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies