Bacterial Infections Disrupt Flies’ Sense of Smell

The temporary loss of olfaction stops the flies from eating any more of whatever it is that made them sick.

Written byAbby Olena, PhD
| 4 min read
A close-up of a fruit fly head with antenna clearly visible in front of its red eyes

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, VASEKK

When someone gets food poisoning, it might be a while before they want to eat the thing that made them sick again, and the same is true for fruit flies (Drosophila melanogaster). In a study published today (July 21) in Nature, researchers determined that after a bacterial infection in the gut, glial cells and neurons in the fly brain communicate in a way that tamps down olfaction and protects the animals from eating the pathogen again.

These authors “unraveled a mechanism that on the genetic, neuronal, and organismic level connects bacteria in the gut all the way to behavior,” says Ilona Grunwald Kadow, a neuroscientist at the Technical University of Munich who did not participate in the study. “It may be one of the fundamental ways that good or bad microorganisms in our gut impact our brains.”

Genentech’s Heinrich Jasper knew from previous work that aging ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo