Bacterial Infections Disrupt Flies’ Sense of Smell

The temporary loss of olfaction stops the flies from eating any more of whatever it is that made them sick.

abby olena
| 4 min read
A close-up of a fruit fly head with antenna clearly visible in front of its red eyes

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, VASEKK

When someone gets food poisoning, it might be a while before they want to eat the thing that made them sick again, and the same is true for fruit flies (Drosophila melanogaster). In a study published today (July 21) in Nature, researchers determined that after a bacterial infection in the gut, glial cells and neurons in the fly brain communicate in a way that tamps down olfaction and protects the animals from eating the pathogen again.

These authors “unraveled a mechanism that on the genetic, neuronal, and organismic level connects bacteria in the gut all the way to behavior,” says Ilona Grunwald Kadow, a neuroscientist at the Technical University of Munich who did not participate in the study. “It may be one of the fundamental ways that good or bad microorganisms in our gut impact our brains.”

Genentech’s Heinrich Jasper knew from previous work that aging ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development