Researchers Produce Alpaca Antibodies Using Yeast

With multiple applications in biomedicine, the antibodies can now be made quickly, cheaply, and without the need for an alpaca or one of its relatives.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PIXABAY, ULLEOCamelids such as camels, llamas, and alpacas make an unusual class of antibodies with a growing number of applications in biomedical science. But researchers wanting to use those antibodies currently have to go through a lengthy and expensive procedure to extract them, limiting the molecules’ use in the lab. Now, a team of US researchers have devised a way to produce the same antibodies in yeast instead, allowing the molecules to be made and identified quickly and cheaply. The findings were published Monday (February 12) in Nature Structural and Molecular Biology.

“There’s a real need for something like this,” study coauthor Andrew Kruse, a biophysicist at Harvard Medical School, says in a statement. “It’s low-tech, it’s a low time investment and it has a high likelihood of success for most proteins. . . . People who have struggled to nail down their protein structures for years with llamas are getting them now.”

In addition to conventional mammalian antibodies, which contain two heavy and two light molecular chains, camelids produce a second set of antibodies made up only of heavy chains. The binding sites of these molecules are known as nanobodies, and, thanks to their smaller size, can bind to otherwise inaccessible parts of proteins. Researchers use the molecules to stabilize a number of peptides of biomedical ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH