Study Challenges CRISPR Method for Making Conditional Knockout Mice

Researchers from 17 labs report low efficacy rates for the popular technique.

Written bySukanya Charuchandra
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK, KOYA79

Aconsortium of 17 laboratories worldwide has presented results contradicting a highly cited study that described a technique to create conditional knockout mice using CRISPR. The preprint, published on bioRxiv on September 1, shows a much lower efficiency rate for the technique compared to the original report.

The results of the new study indicate the limitations of the original study, whose success appears to be relegated to deleting a specific gene within a hybrid mouse strain. The lead author of the first report, cited nearly 1,000 times by Google Scholar’s count, stands by the strength of his method.

Before the original study, published in 2013 by geneticist Rudolf Jaenisch at the Whitehead Institute of Biomedical Research and colleagues, embryonic stem cells were used to prepare conditional knockout mice—animals with a gene engineered to be turned off on command that are missing a gene—a process that could take ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo