Synthetic Organelles Let Researchers Control Cell Behavior

A technique that reversibly bundles tagged cargo into artificial membraneless compartments gives scientists the ability to switch cell processes on and off.

| 3 min read
Abstract graphene structures

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, OLEMEDIA

Eukaryotic cells’ contents are organized into various compartments, including membraneless organelles formed by a process known as liquid-liquid phase separation. Researchers have experimented with creating artificial versions of these compartments to control various aspects of cell biology—blocking particular cellular reactions, for example, or creating new sites for protein translation. Now, a team led by Matthew Good at the University of Pennsylvania Perelman School of Medicine has combined several recent advances into a technique for creating membraneless organelles that reversibly store and release specific intracellular cargo, letting researchers control cell behavior even more finely than before.

To make the organelles, Good’s team engineered yeast (and later human cells) to produce a tweaked version of a protein from the worm C. elegans that would spontaneously coalesce to form droplets, or condensates, in the cell cytoplasm. Then, to mark particular peptides as cargo for these artificial organelles, the researchers ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

November cover of The Scientist
November 2021

Embryonic Eavesdropping

Animals start listening even before they enter the world

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours