CAR T Cells Mend Broken Mouse Hearts

Specialized immune cells generated in vivo reduce cardiac scar tissue in mice, a new study shows.

Written bySophie Fessl, PhD
| 4 min read
knitted pink heart with a mended hole
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

In the cutting-edge cancer treatment known as CAR T cell therapy, some of a patient’s immune cells are removed and engineered to express a synthetic CAR receptor that allows the cells to latch onto and destroy cancer cells. With a new method developed in mice, CAR T cells can now be made in vivo, without removing and re-transfusing cells—and then used to treat a very different condition. In the mice, the CAR T cells targeted wound-healing cells called fibroblasts and thus reduced the formation of scar tissue on the heart. The results are reported today (January 6) in Science.

The ability to generate CAR T cells in vivo “now makes every center in the United States that can handle a syringe a potential treatment place,” Jeffery Molkentin, a molecular biologist at Cincinnati Children’s Hospital who was not involved in the study, tells The Scientist. “If this is used for cancer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery