Mouse Foraging Behavior Shaped by Opposite-Sex Parent’s Genes

A study in mice finds that for certain genes, one parent’s allele can dominate expression and shape behavior—and which parent’s allele does so varies throughout the body.

Written byDan Robitzski
| 7 min read
An illustration showing a scale weighing two double-stranded pieces of DNA that has a big question mark in the center.
Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Like physical traits, behavioral traits have a heritable component, and personalities may resemble one parent’s more than the other. New research in mice finds that specific complex behaviors in these animals are shaped by genes inherited from just one parent.

Not only are alleles inherited from a mouse’s mom or dad expressed in unequal proportions in various cells in the brain and adrenal system—a phenomenon called genomic imprinting—but expressing the maternal or paternal allele leads to observable differences in the behavior and physiology of the offspring, according to a study published in Cell Reports on March 8. The scientists behind the research also found that maternal alleles shape the foraging behavior of male offspring, while the paternal alleles shape the behavior of female offspring. But why and how this happens is not yet clear.

The paper results from nine years of research in which lead author Christopher Gregg, a neurobiologist ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white image of young man in sunglasses with trees in background

    Dan is an award-winning journalist based in Los Angeles who joined The Scientist as a reporter and editor in 2021. Ironically, Dan’s undergraduate degree and brief career in neuroscience inspired him to write about research rather than conduct it, culminating in him earning a master’s degree in science journalism from New York University in 2017. In 2018, an Undark feature Dan and colleagues began at NYU on a questionable drug approval decision at the FDA won first place in the student category of the Association of Health Care Journalists' Awards for Excellence in Health Care Journalism. Now, Dan writes and edits stories on all aspects of the life sciences for the online news desk, and he oversees the “The Literature” and “Modus Operandi” sections of the monthly TS Digest and quarterly print magazine. Read more of his work at danrobitzski.com.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo