DNA-Delivered Antibodies Fight Off Lethal Bacterial Infection

Mice receiving the treatment produced their own monoclonal antibodies and survived infection with the life-threatening pathogen Pseudomonas aeruginosa.

Written byCatherine Offord
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Mouse muscle (nuclei stained blue) expresses monoclonal antibodies (green) that are protective against the bacterium Pseudomonas aeruginosa.AMI PATEL

US researchers have successfully delivered a monoclonal antibody against a severe bacterial infection using DNA—the first time such a platform has been used for a bacterial target. Mice injected with the genetic sequence for a monoclonal antibody survived inoculation with the life-threating, multidrug-resistant pathogen Pseudomonas aeruginosa, providing a proof-of-concept for a potentially cheaper and faster alternative to current monoclonal antibody treatments. The findings were published last month (September 21) in Nature Communications.

“It’s great to see that this kind of in vivo delivery can have a protective effect, in this case in the context of a bacterial infection,” says Mireia Pelegrin, an immunologist at the Institute of Molecular Genetics of Montpellier, France, who was not involved in the current research. Compared to previous attempts with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery