Jumping Genes Can Cause Movement Disorder: Study

Mice with overactive LINE-1 retrotransposons in their brains exhibit movement difficulties, suggesting the genetic elements may play a role in ataxia in humans. 

Written bySophie Fessl, PhD
| 3 min read
artistic representation of a jumping gene
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Retrotransposon activity could be one cause of the movement disorder ataxia, a study published on September 6 in Neuron suggests. These so-called jumping genes have the ability to create copies of themselves, which then insert in new places in the genome, potentially altering genes or gene expression. The researchers found that overactivating retrotransposons called LINE-1 elements in the cerebellums of mice gave the animals problems with movement and other symptoms of ataxia, a disorder that affects balance and speech in humans. The team also found increased activity of these retrotransposons in the cerebella of patients with an inherited form of the condition.

This research “is adding to the idea of a really important role of LINE-1 in neurodegenerative diseases. And not only as a bystander, but as a potential driver,” says Julia Fuchs, a physician researcher at the College de France who studies the pathophysiology of transposable elements in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford. After completing her PhD, she swapped her favorite neuroscience model, the fruit fly, for pen and paper.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo