Exercise-Associated Protein Boosts Brain Function in Mice

A study that transfused plasma from active to inactive mice suggests the protein clusterin enhances cognition.

Written byChloe Tenn
| 5 min read
mice on wheel and ground
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

The benefits of exercise on human and animal brains is well-established, and multiple studies have identified signals and changes within the body that might underlie these effects. A study published yesterday (December 8) in Nature identifies another, showing that the brain benefits of exercise can be transferred from active and sedentary mice via a plasma protein called clusterin.

“Previous research from my lab and others showed plasma factors that circulate in blood can affect the brain. So the question was; Are plasma factors induced by exercise affecting the brain during exercise, and in which way?” study coauthor and neuropsychologist Zurine De Miguel tells The Scientist.

To answer this question, De Miguel, then at Stanford University, and her colleagues kept mice in their habitats for 28 days with either a functional or locked wheel. Plasma was extracted from the blood of both groups, and an experimental group of sedentary mice was ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • young woman smiling

    Chloe Tenn is a graduate of North Carolina State University, where she studied neurobiology, English, and forensic science. Fascinated by the intersection of science and society, she has written for organizations such as NC Sea Grant and the Smithsonian. Chloe also works as a freelancer with AZoNetwork, where she ghostwrites content for biotechnology, pharmaceutical, food, energy, and environmental companies. She recently completed her MSc Science Communication from the University of Manchester, where she researched how online communication impacts disease stigma. You can check out more of her work here.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies