Modified Salmonella Revs Immune Response, Combats Tumors in Mice

When coated with positively charged particles, the bacteria shuttled antigens out of tumors and activated the immune system, a study finds.

Written byNatalia Mesa, PhD
| 5 min read
Salmonella (pink) invading a human epithelial cell (yellow)
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

As tumors grow, they skillfully evade the body’s immune response. Cancer cells multiply quickly, forming a dense mass of tissue and vasculature that becomes increasingly difficult for immune cells to infiltrate, and they begin to pump out molecules that suppress immune cell function.

In some cancer patients, just outside the tumor, many immune cells function normally. Dendritic cells capture antigens on the tumor’s surface and launch an immune cascade, marking cancer cells for destructionbut often not at the rate necessary to halt tumor growth.

In a paper published January 20 in Nature Biomedical Engineering, scientists report using a combination of modified Salmonella bacteria and radiation to enhance the body’s natural immune response against tumors in mice. The researchers injected the Salmonella into tumors to capture antigens and shuttle them out, making the antigens accessible to immune cells.

“I thought the study was really innovative,” Andrew Redenti, a graduate student in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies