Early-Life Stress Exerts Long-Lasting Effects Via Epigenome

In mice, epigenetic marks made on histones during infancy influence depression-like behavior during adulthood. A drug that reverses the genomic tags appears to undo the damage.

asher jones
| 5 min read
early-life stress, histone, chromatin, epigenetics, epigenetic modification, methylation, DNA, protein, stress, adversity, mice, genetics, genomics

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: An illustration of DNA (orange) wound around histone proteins (blue), forming chromatin
© ISTOCK.COM, SELVANEGRA

Early life stress, such as childhood trauma, is linked with the development of depression in adulthood, but the mechanisms that drive lasting changes in the brain are not well understood. In a study published March 15 in Nature Neuroscience, researchers found that early-life stress in mice induces epigenetic changes in a particular type of neuron, which in turn make the animals more prone to stress later in life. Using a drug that inhibits an enzyme that adds epigenetic marks to histones, they also show that the latent effects of early-life stress can be reversed.

“It is a wonderful paper because it is really advancing our ability to understand how events that happen early in life leave enduring signatures in the brain so that they influence what we do as adults,” says Tallie Z. Baram, a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • asher jones

    Asher Jones

    Asher is a former editorial intern at The Scientist. She completed a PhD in entomology from Penn State University, and she was a 2020 AAAS Mass Media Fellow at Voice of America. You can find more of her work here.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo