Early-Life Stress Exerts Long-Lasting Effects Via Epigenome

In mice, epigenetic marks made on histones during infancy influence depression-like behavior during adulthood. A drug that reverses the genomic tags appears to undo the damage.

Written byAsher Jones
| 5 min read
early-life stress, histone, chromatin, epigenetics, epigenetic modification, methylation, DNA, protein, stress, adversity, mice, genetics, genomics

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: An illustration of DNA (orange) wound around histone proteins (blue), forming chromatin
© ISTOCK.COM, SELVANEGRA

Early life stress, such as childhood trauma, is linked with the development of depression in adulthood, but the mechanisms that drive lasting changes in the brain are not well understood. In a study published March 15 in Nature Neuroscience, researchers found that early-life stress in mice induces epigenetic changes in a particular type of neuron, which in turn make the animals more prone to stress later in life. Using a drug that inhibits an enzyme that adds epigenetic marks to histones, they also show that the latent effects of early-life stress can be reversed.

“It is a wonderful paper because it is really advancing our ability to understand how events that happen early in life leave enduring signatures in the brain so that they influence what we do as adults,” says Tallie Z. Baram, a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo